CDM

Removal of Arsenic from Mine Water Using an Adsorption-Based System

Kent Whiting

May, 2010

Mine Water Quality – November 2008

Parameter	Value
рН	7.7
Alkalinity	300 mg/L
TDS	306 mg/L
Arsenic	0.018 mg/L
Copper	0.003 mg/L
Iron	ND
Zinc	0.008 mg/L
Manganese	1.5 mg/L
Silicon	14.4 mg/L
Calcium	80 mg/L
Magnesium	24 mg/L

Severn Trent SORB33 System

SORB33 Media

High surface area – 100-500 m²/g

Porous – 98% of surface area is within the particle

Arsenic is removed from the water via adsorption onto the porous media

Once the adsorption sites are consumed, the media is disposed of.

Factors Contributing to Media Performance

pH - <7 is preferred</p>

Low levels of competing ions (Si, P, V, F, and SO₄)

Low TSS – To prevent channeling

 No precipitation reactions within bed (media can become coated)

System Installation

Installed System

Media in Vessel

Completed Installation

Submersible Pump

System Performance

 Breakthrough occurred after only one month of operation (30 ppb in effluent)

Non-degradation standard for arsenic is 3 ppb.

Manufacturer predicted media life of ~0.5 yr.

Possible Reasons for Breakthrough

 Media Fouling by iron- or sulfate-reducing bacteria

 Presence of unexpected TSS and iron levels in the influent

 Precipitation of minerals onto and deactivation of the media

Bacteria

 Although TOC is low in the influent (~2 mg/L), significant organic material is present within the decaying mine timbers within the workings

 Addition of bleach to the spent media resulted in significant reaction, but did not regenerate the media. Routine addition has resulted in improved As removal.

 Addition of acid resulted in production of a gas with a hydrogen sulfide odor, suggesting that sulfate-reducing bacteria were active.

Bleach Addition

01/29/2010

System Performance

TSS

 Bag filters were placed within the influent line to remove the TSS and the media was replaced.

System performance was again short-lived.

Mineral Precipitation

 Analysis of the spent media suggested that manganese was being retained within the lead vessel

 PHREEQC modeling indicated that manganese carbonate and possibly calcium carbonate were precipitating within the media

 Regeneration procedures proved to be impractical, but did show that once the manganese was removed, arsenic exchange became possible.

Geochemical Modeling Results

		Saturation Index		
		Calcite	Rhodochrosite	Carbon Dioxide*
Sample	Date	CaCO ₃	MnCO3	CO ₂ (g)
Shaft #1 50 ft	2/12/2008	0.71	1.27	-2.54
Shaft #1	8/26/2008	0.21	0.83	-2.03
Shaft #1 8 ft	11/6/2008	0.48	1.04	-2.24
Shaft #1	12/16/2009	-0.12	0.52	-1.76

Regeneration Procedure

Bleach – To oxidize sulfides

pH 2 Oxalic Acid – To dissolve Manganese (6 EBVs)

• pH 12 Caustic – To remove arsenic (5 EBVs)

pH 2.5 HCl – To regenerate media surfaces (15 EBVs)

Regeneration Results

Solution	As (mg/L)	Fe (mg/L)	Mn (mg/L)
Oxalic	0.096	677	172
Caustic	18.8	239	3.45
HCI	1.77	59.5	0.42

 Oxalic removed large amounts of iron and manganese, but insignificant As

 Once the Fe and Mn were removed, the arsenic was successfully removed from the media

Conclusions

 Iron and manganese precipitates, as either sulfides or carbonates are coating the media

The production of sulfides appears to be due to the action of sulfate-reducing bacteria within microenvironments

 Disinfection and pre-treatment for iron and manganese appear to be necessary prior to treatment with SORB33 media

Questions?